OpenCV3.3で公式にサポートされたDNN(深層ニューラルネットワーク)モジュールの
Python版mobilenetサンプルを動作させてみました。
学習済みモデルは以下URLにあるはずだが、リンク切れていたため、
https://github.com/chuanqi305/MobileNet-SSD/blob/master/MobileNetSSD_train.caffemodel
ひとまず、以下のURLから取得。
https://drive.google.com/file/d/0BwY-lpO6tzxHRHNCdlRKczIzaEU/view?usp=sharing
動画は以下。
CPUのみでもそこそこ動く。
www.youtube.com
ソースコードは以下。
基本的には、「opencv\sources\samples\dnn\mobilenet_ssd_python.py」と同じ。
自分の環境構築が悪いのか、そのままで動作しなかったところを一部修正。
#!/usr/bin/env python # -*- coding: utf-8 -*- import numpy as np import argparse try: #import cv2 as cv import cv2 #[修正] cv2呼び出ししているため、as cvを削除 from cv2 import dnn #[修正] dnnモジュールをインポート except ImportError: raise ImportError('Can\'t find OpenCV Python module. If you\'ve built it from sources without installation, ' 'configure environemnt variable PYTHONPATH to "opencv_build_dir/lib" directory (with "python3" subdirectory if required)') inWidth = 300 inHeight = 300 WHRatio = inWidth / float(inHeight) inScaleFactor = 0.007843 meanVal = 127.5 classNames = ('background', 'aeroplane', 'bicycle', 'bird', 'boat', 'bottle', 'bus', 'car', 'cat', 'chair', 'cow', 'diningtable', 'dog', 'horse', 'motorbike', 'person', 'pottedplant', 'sheep', 'sofa', 'train', 'tvmonitor') if __name__ == "__main__": parser = argparse.ArgumentParser() parser.add_argument("--video", help="path to video file. If empty, camera's stream will be used") parser.add_argument("--prototxt", default="MobileNetSSD_300x300.prototxt", help="path to caffe prototxt") parser.add_argument("-c", "--caffemodel", help="path to caffemodel file, download it here: " "https://github.com/chuanqi305/MobileNet-SSD/blob/master/MobileNetSSD_train.caffemodel") parser.add_argument("--thr", default=0.2, help="confidence threshold to filter out weak detections") args = parser.parse_args() net = dnn.readNetFromCaffe(args.prototxt, args.caffemodel) #if len(args.video): #[修正] --video未指定時にlen()で長さ取得できないはずなので修正 if args.video != None: cap = cv2.VideoCapture(args.video) else: cap = cv2.VideoCapture(0) while True: # Capture frame-by-frame ret, frame = cap.read() blob = dnn.blobFromImage(frame, inScaleFactor, (inWidth, inHeight), meanVal) net.setInput(blob) detections = net.forward() cols = frame.shape[1] rows = frame.shape[0] if cols / float(rows) > WHRatio: cropSize = (int(rows * WHRatio), rows) else: cropSize = (cols, int(cols / WHRatio)) y1 = (rows - cropSize[1]) / 2 y2 = y1 + cropSize[1] x1 = (cols - cropSize[0]) / 2 x2 = x1 + cropSize[0] frame = frame[y1:y2, x1:x2] cols = frame.shape[1] rows = frame.shape[0] for i in range(detections.shape[2]): confidence = detections[0, 0, i, 2] if confidence > args.thr: class_id = int(detections[0, 0, i, 1]) xLeftBottom = int(detections[0, 0, i, 3] * cols) yLeftBottom = int(detections[0, 0, i, 4] * rows) xRightTop = int(detections[0, 0, i, 5] * cols) yRightTop = int(detections[0, 0, i, 6] * rows) cv2.rectangle(frame, (xLeftBottom, yLeftBottom), (xRightTop, yRightTop), (0, 255, 0)) label = classNames[class_id] + ": " + str(confidence) labelSize, baseLine = cv2.getTextSize(label, cv2.FONT_HERSHEY_SIMPLEX, 0.5, 1) cv2.rectangle(frame, (xLeftBottom, yLeftBottom - labelSize[1]), (xLeftBottom + labelSize[0], yLeftBottom + baseLine), (255, 255, 255), cv2.FILLED) cv2.putText(frame, label, (xLeftBottom, yLeftBottom), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 0, 0)) cv2.imshow("detections", frame) if cv2.waitKey(1) >= 0: break