高橋かずひとのプログラミング、その他、備忘録。

日々調べてたことや、作ってみたものをメモしているブログ。 お決まりの断り文句ですが、このブログに書かれている内容は個人の見解であり、所属する組織の公式見解ではありません。チラ裏。

2022-01-01から1ヶ月間の記事一覧

PINTO_model_zoo:暗所ノイズ除去(243_Zero-DCE-improved)Pythonデモ追加

Zero-DCE-improved味見中 性能は結構良いと思います。 ライセンスがAcademic use onlyじゃなければなー、、、 Zero-DCE-improved味見中性能は良いと思うのですが、AGLLNetと甲乙つけがたい速度はCPU推論(Core i7-8750H)だと320ms前後、GPU推論(GeForce GTX 1…

landmarks_classifier_asia_V1お試し🦔

TensorFlow Hubからlandmarks_classifier_asia_V1です。 アジアの17,771以上のランドマークを認識するモデルです。 TensorFlow Hubのlandmarks_classifier_asia_v1を味見していますKaminarimon Gate Senso-ji pic.twitter.com/Iz4TKbq3sz — 高橋 かずひと@マ…

PINTO_model_zoo:セマンティックセグメンテーション(238_SUIM-Net)Pythonデモ追加

水中のセグメンテーションモデルSUIM-Netの味見です。 味見なのですが、後処理ミスってる気がする、、、 確認中です SUIM-Net味見中何か公式リポジトリよりイマイチになってしまった、、、後処理ミスったかしら、、、 https://t.co/IDgZH5s2jR pic.twitter.c…

PINTO_model_zoo:超解像(240_BSRGAN)Pythonデモ追加

BSRGANです。 綺麗ですが、捏造感が結構あります あと重い BSRGAN味見中綺麗なのですが、作られた画像感が凄いあとボチボチ重くて128x128のGPU推論(GeForce GTX 1050 Ti)で320ms前後ある。 https://t.co/vdO5Jtqd77 pic.twitter.com/xw81VZwINv — 高橋 かず…

PINTO_model_zoo:暗所ノイズ除去(241_SCL-LLE)Pythonデモ追加

SCL-LLEお試しです。 中々バランス良さそう ONNXのCPU推論が何故か激重なのですが。 SCL-LLE味見中CPU推論(Core i7-8750H)だと重い(2500ms前後)なのに、GPU推論(GeForce GTX 1050 Ti)だとかなり早く(15ms前後)なります。性能は明るいところ暗いところのバラ…

【NGK2022S】Unity Barracuda で ニューラルネットワークの推論

NGK2022S(名古屋合同懇親会 2022新年会)で発表してきました昨年同様oViceとYouTubeライブを活用したオンライン開催でした。 今年も多種多様な発表があって、楽しかったですねー。 来年こそはオフラインハイブリッド開催されることを祈っています 昨年の「…

PINTO_model_zoo:ブラー除去(232_MIMO-UNet)Pythonデモ追加

ブラー除去(MIMO-UNet)の味見をしています 確かに綺麗なのですが、、、 重い、、、 これは何かの前処理に使うには重い、、、 リアルタイムじゃないシステムなら使いどころあるかしら MIMO-UNet味見ブラーはちょうど良い画像とか動画を持っていないから、いつ…

YOLOP ONNX推論お試し👀

YOLOPをお試ししています。 YOLOPはマルチタスクなネットワークで、車両検出、道路セグメンテーション、レーンセグメンテーションの3つのタスクをこなします YOLOPさん。訓練済みモデルが日本の道路と相性悪いのか、いまいちセグメンテーションが不安定な気…

PINTO_model_zoo:暗所ノイズ除去(231_DRBL)Pythonデモ追加

DRBL味見中 若干ライトがきついかなー。。。 231_DRBL 味見中若干、ライトがきついかなONNX CPU推論(Core i7-8750H)で、推論時間で150~180msくらいでした。 https://t.co/7f2MZzT9f9 pic.twitter.com/YsBoTqHczF — 高橋 かずひと@マリオジェノサイダー (@Kz…

マリオAIチャレンジ開催中🍄!

からあげさんがマリオAIチャレンジと言う企画をGitHubで開催しています これはColaboratory上で強化学習を用いてマリオをクリアしようという企画で、僕も途中から参加しています 報酬関数の設計とかハイパーパラメータの調整だけでも中々難しくてステージに…

PINTO_model_zoo:雪除去(230_Single-Image-Desnowing-HDCWNet)Pythonデモ追加

雪除去のモデルです。 大きな雪は綺麗に除去できて、吹雪みたいに真っ白い感じだと流石に苦しいって感じです。 それでも視認性は向上しますが FlexDelegate有効化で動きましたノートPCのCPU推論だと実行時間やばいですが、、、 pic.twitter.com/6tol1iXDGG —…

PINTO_model_zoo:セマンティックセグメンテーション(228_Fast-SCNN)Pythonデモ追加

激速のセマンティックセグメンテーション Fast-SCNN味見中です 768x1344のサイズでONNX CPU推論をお試しこのサイズでCPU推論で200ms前後は確かに早い。そして確かに精度はボチボチボチボチ https://t.co/VgDxZILjYw pic.twitter.com/LpA2IgYykU — 高橋 かず…

霧除去モデルの NTIRE-2021-Dehazing-Two-branch を Colaboratory 上でお試し👀

霧除去モデルです。結構重めのやつ。 Colaboratory上で試したサンプルの供養です。 NTIRE-2021-Dehazing-Two-branch を Google Colaboratory上で推論したサンプルの供養ですたしかに凄い性能だとは思うのですが、捏造ぽいところも結構目立つ気がする、、、そ…

GTSDB(German Traffic Sign Detection Benchmark)でトレーニングされたTraffic Sign Detection👀

いや、ドイツの交通標識データセットなんですけどね、、、 以下は日本の動画なので、クラスIDは当然全然違いますが、検出自体はボチボチしている 結構古めのモデルですが、GTSDB(German Traffic Sign Detection Benchmark)を使った検出モデルがあったので試…

PINTO_model_zoo:霧除去(223_DA_dahazing)Pythonデモ追加

画風変換と言うかベースはCycleGAN使っているので、 ある意味もろ画風変換な霧除去ですね DA_dahazing味見中、、、うーん?霧除去と言うより画風変換ぽい気もする。https://t.co/MSDeNarNfy pic.twitter.com/JL6F2QSTwy — 高橋 かずひと@マリオジェノサイダ…

PINTO_model_zoo:霧除去(224_Y-net)Pythonデモ追加

CPUはそうでもないですが、GPU推論速度が速い霧除去モデルです Y-NET味見中モデルの構造のせいなのかCPU推論は遅い(350ms前後)のに、GPU(GeForce GTX 1050 Ti)だと(15ms前後)の速さになる除去性能は特筆すべき感じは無し?https://t.co/V6gieuNup9 pic.twitt…